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New Reals

Phrase ’Forcing notion adds a new real’ means that for any generic
filter G over V , the generic extension V [G ] contains a new subset
σ ⊂ ω
Hence V [G ] contains a function ρ : ω → ω which does not belong
to groundmodel V .

It is quite common in set theory that under the term ’real’ we
mean subset of ω. Hence elements of Cantor space C = ω{0, 1}
are reals as well as the function from ω to ω, i.e. elements from
Baire space N are called reals.
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Classification of New Reals
Let M denote an extension of V .
• X ⊆ ω in the extension is said to be an independent (or

splitting) real over V if for all Y ∈ [ω]ω ∩ V both X ∩ Y and
Y − X are infinite.

• A function f ∈ M, f ∈ ωω, is a dominating real over V if for
all g ∈ ωω ∩ V for all but finitely many n ∈ ω, g(n) ≤ f (n).

• A function h ∈ ωω in the extension is said to be an
unbounded real over V if for all f ∈ ωω ∩ V the set
{n ∈ ω : h(n) > f (n)} is infinite.

• A function h ∈ ωω in the extension is said to be an eventually
different real over V if for all f ∈ ωω ∩ V the set
{n ∈ ω : h(n) = f (n)} is finite.

• M is an ωω-bounding extension of V if every f ∈ M, f ∈ ωω

is dominated by a g ∈ ωω ∩ V .
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Cohen Real

Cohen forcing. Cohen forcing is countable atomless ordering and
is equivalent to any of the following set

• Seq =
⋃
{nω : n < ω},

• Seq2 =
⋃
{n2 : n < ω},

• Fn(ω, 2) = {f ; f : D → {0, 1},D ∈ [ω]<ω},
ordered by inverse inclusion ⊇.
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over V if for all f ∈ ωω∩V the set {n ∈ ω : h(n) > f (n)} is infinite.
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Cohen forcing
◦ adds a new real,
◦ adds a splitting set,
◦ adds unbounded real,
◦ does not add an eventually different real, hence cannot add dom-
inating reals.



Random Real

• (Borel(2ω)− Null,⊆) is Random forcing. The ordering is
not separative, its separative quotient is

• (Borel(2ω)/Null,⊆). This is ccc complete atomless Boolean
algebra that carries strictly positive σ-additive measure,
m[U] = m(U), for each U ∈ Borel(2ω).

fact Any measure algebra satisfies ccc .
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Random Real

Random forcing
◦ adds a new real,
◦ adds a splitting set,
◦ adds an eventually different real,
◦ is an ωω-bounding extension, hence cannot add unbounded real.

Theorem
(i) In Random extension are groundmodel reals meager.
(ii) In Cohen extension are groundmodel reals negligible.



Dominating Real

A function f ∈ M, f ∈ ωω, is a dominating real over V if for all
g ∈ ωω ∩ V for all but finitely many n ∈ ω, g(n) ≤ f (n).



Hechler Real

Hechler forcing
is a set H0 = {〈s, f 〉 : s ∈ <ωω, f : ω → ω, s ⊂ f },
with a partial ordering
〈s, f 〉≤〈t, g〉 if and only ift ⊆ s & (∀n ∈ ω) f (n) ≥ g(n).

adds dominating real
Hence it also adds eventually different, unbounded, and
independent real.
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